Dynamics and thermodynamics of water around EcoRI bound to a minimally mutated DNA chain.
نویسندگان
چکیده
Water plays an important role in protein-DNA interactions. Here, we examine using molecular dynamics simulations the differences in the dynamic and thermodynamic properties of water in the interfacial and intercalating regions of EcoRI bound to the cognate and to a minimally mutated noncognate DNA chain. The results show that the noncognate complex is not only more hydrated than the cognate complex, but the interfacial waters in the noncognate complex exhibit a faster dynamics, which in turn reduces the hydrogen-bond lifetimes. Thus, the higher hydration, faster reorientation dynamics and faster hydrogen-bond-relaxation times of water, taken together, indicate that, even with a minimal mutation of the DNA sequence, the interfacial regions of the noncognate complex are more poised to allowing the protein to diffuse away than to promoting the formation of a stable complex. Alternatively, the results imply that the slowed water dynamics in the interfacial regions when the protein chances upon a cognate sequence allow the formation of a stable specific protein-DNA complex leading to catalytic action.
منابع مشابه
Dynamic and structural changes in the minimally restructuring EcoRI Bound to a minimally mutated DNA chain.
The dynamics of a protein plays an important role in protein functionality. Here, we examine the differences in the dynamics of a minimally restructuring protein, EcoRI, when it is bound to its cognate DNA and to a noncognate sequence which differs by just a single basepair. Molecular dynamics simulations of the complexes and essential dynamics analyses reveal that the overall dynamics of the p...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملMitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملMechanism of Calf thymus DNA radioprotection by sucrose: A combined effect of scavenging action and altered water
Background: Development of safe radioprotector is a challenging task. In this study radioprotective effect of sucrose has been demonstrated in calf thymus DNA (CtDNA). Sucrose is a free radical scavenger and also acts as osmolyte and therefore can influence the water activity around DNA and effects of radiation on DNA. Hoechst 33258 was used to probe the possible alteration in physicochemical p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 35 شماره
صفحات -
تاریخ انتشار 2012